一种用于铰链式舱门抛放的齿轮联动机构及其使用方法与流程
本发明属于直升机座舱应急逃生技术领域,尤其涉及一种用于铰链式舱门抛放的齿轮联动机构及其使用方法。背景技术:目前,国内现有直升机座舱的应急逃生主要通过破坏座舱侧窗形成逃生通道。目
2021-02-24查看详情>>
本发明涉及仿生机器人技术领域,尤其是涉及一种扑翼驱动装置及飞行器。
背景技术:
扑翼飞行器是通过控制翼片的形状或者扑动平面来实现空间上的转动,已经广泛应用于军事侦察、抢险救灾、野外探索等领域中。传统扑翼飞行器受结构限制,去程与回程速度函数不对称,导致翼片扑动不同步,导致飞行器的飞行稳定性较低、可控性差。
技术实现要素:
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种扑翼驱动装置,能够提高飞行器的飞行稳定性。
本发明还提出一种包含上述扑翼驱动装置的飞行器。
第一方面,本发明的一个实施例提供了一种扑翼驱动装置,包括:
机架;
平移驱动件,活动设置在所述机架上,能够沿所述机架往复直线运动;
转动驱动件,设置有两个,对称设置于所述平移驱动件移动方向的两侧,与所述平移驱动件传动连接,所述转动驱动件能够跟随所述平移驱动件的往复直线运动进行同步往复转动;
翼梁,用于安装所述扑翼,每一所述转动驱动件均连接有所述翼梁,所述翼梁能够跟随所述转动驱动件的往复转动而形成扑动动作。
本发明实施例中的扑翼驱动装置至少具有如下有益效果:
本发明实施例中的扑翼驱动装置,通过平移驱动件的往复平移带动连接于其两侧的转动驱动件进行往复转动,使翼梁进行往复转动,进而实现扑翼的扑动,因驱动部、转动驱动件相对于平移驱动件对称,平移驱动件运动时能够带动翼梁同步运动,从而使扑翼具有对称的运动规律,提高了飞行器飞行时的可控性及稳定性。
根据本发明的另一些实施例的扑翼驱动装置,还包括传动部,所述传动部包括驱动件及偏心转体,所述驱动件安装于所述机架上,所述驱动件与所述偏心转体连接,并用于驱动所述偏心转体转动,所述偏心转体与所述平移驱动件传动连接并用于驱动所述平移驱动件往复移动。
根据本发明的另一些实施例的扑翼驱动装置,所述传动部还包括传动杆,所述偏心转体为曲柄,所述曲柄的两端分别与所述驱动件、所述传动杆转动连接。
根据本发明的另一些实施例的扑翼驱动装置,所述传动部还包括传动杆,所述偏心转体具有至少两个不同轴心的转轴,两个不同轴心的所述转轴之间连接有曲柄,两个所述转轴分别与所述驱动件、所述传动杆转动连接。
根据本发明的另一些实施例的扑翼驱动装置,所述传动部还包括传动杆,所述偏心转体包括第一转轴、第二转轴与第三转轴,所述第一转轴与所述第三转轴的轴心重合,所述第一转轴与所述第二转轴的轴心平行且相互偏移,所述第一转轴与所述第二转轴之间连接有曲柄,所述第一转轴与所述驱动件连接,所述第二转轴与所述传动杆连接,所述第三转轴与所述机架连接。
根据本发明的另一些实施例的扑翼驱动装置,所述传动部还包括传动杆,所述偏心转体上固设有转轴,所述转轴与所述驱动件连接,所述传动杆的一端抵持所述偏心转体,所述偏心转体用于推动所述传动杆移动。
根据本发明的另一些实施例的扑翼驱动装置,所述机架上设有滑槽,所述平移驱动件滑动连接于所述滑槽内。
根据本发明的另一些实施例的扑翼驱动装置,所述传动部还包括第一传动齿轮组,所述第一传动齿轮组与所述驱动件、所述偏心转体传动连接,所述第一传动齿轮组用于带动所述偏心转体转动。
根据本发明的另一些实施例的扑翼驱动装置,还包括驱动部,所述驱动部包括第二传动齿轮组,所述第二传动齿轮组与所述转动驱动件、所述翼梁传动连接,所述第二传动齿轮组用于带动所述翼梁往复转动。
第二方面,本发明的一个实施例提供了一种飞行器,包括:
上述的扑翼驱动装置;
飞行控制装置,与所述机架连接,用于改变所述飞行器的飞行姿态。
本发明实施例中的飞行器至少具有如下有益效果:
本发明中的飞行器通过设置扑翼驱动机构提高飞行器飞行中的稳定性及可控性,并可在飞行控制装置的控制下,实现飞行器的俯仰、偏航、滚转等飞行姿态,使飞行器能够执行不同类型的任务,具有较大的应用范围。
附图说明
图1是本发明中扑翼驱动装置一个实施例的结构示意图;
图2是图1中扑翼驱动装置另一方向的结构示意图;
图3是本发明传动部一个实施例的结构示意图;
图4是本发明偏心转体一个实施例的结构示意图;
图5是本发明偏心转体另一实施例的结构示意图;
图6是本发明驱动部一个实施例的结构示意图;
图7是本发明飞行器一个实施例的结构示意图。
附图标记说明:
机架100,滑槽110,第一盖板120,第二盖板130;
平移驱动件200,固定轴210,移动槽220;
转动驱动件300;
翼梁400,连接件410,连接臂411;
驱动部500,第二传动齿轮组510,第三传动齿轮511;
传动部600,偏心转体610,第一转轴611,第二转轴612,第三转轴613,曲柄614,转轴615,驱动件620,传动杆630,第一传动齿轮组640,第一传动齿轮641,双层齿轮642,第二传动齿轮643;
飞行控制装置700。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
在本发明实施例的描述中,如果涉及到方位描述,例如“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明实施例的描述中,如果某一特征被称为“设置”、“固定”、“连接”、“安装”在另一个特征,它可以直接设置、固定、连接在另一个特征上,也可以间接地设置、固定、连接、安装在另一个特征上。在本发明实施例的描述中,如果涉及到“若干”,其含义是一个以上,如果涉及到“多个”,其含义是两个以上,如果涉及到“大于”、“小于”、“超过”,均应理解为不包括本数,如果涉及到“以上”、“以下”、“以内”,均应理解为包括本数。如果涉及到“第一”、“第二”,应当理解为用于区分技术特征,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
参照图1至图3,本实施例中的扑翼驱动装置包括机架100、平移驱动件200、转动驱动件300及翼梁400,机架100为其他结构提供安装基础,平移驱动件200活动设置在机架100上,并能够沿机架100往复直线运动,平移驱动件200在其移动方向的两侧对称设置有转动驱动件300,转动驱动件300能够跟随平移驱动件200的往复平移同步进行往复转动;翼梁400用于安装扑翼,每一个转动驱动件300均与翼梁400连接,翼梁400跟随转动驱动件300的往复转动而进行扑动,从而实现飞行器的飞行。
本实施例中的扑翼驱动装置,通过平移驱动件200的往复平移带动连接于其两侧的转动驱动件300进行往复转动,使翼梁400进行往复转动,进而实现扑翼的扑动,因转动驱动件300相对于平移驱动件200对称,平移驱动件200运动时能够带动翼梁400同步运动,从而使扑翼具有对称的运动规律,提高了飞行器飞行时的可控性及稳定性。
需要说明的是,平移驱动件200可通过连接能够正反转的电机及连接部件,或者连接气缸、电缸等往复推动部件,实现平移驱动件200的往复平移。
本实施例中,还包括驱动部500,驱动部500与平移驱动件200传动连接,驱动部500能够跟随平移驱动件200的移动同步进行运动;转动驱动件300分别与两个驱动部500传动连接,通过驱动部500的动力传递,使转动驱动件300能够跟随平移驱动件200的往复平移同步进行往复转动。
参照图3,本实施例中的扑翼驱动装置还包括传动部600,传动部600包括偏心转体610及驱动件620,传动部600用于将驱动件620的动力传递至平移驱动件200,实现平移驱动件200的平移。具体的,传动部600包括偏心转体610及传动杆630,驱动件620与偏心转体610连接,偏心转体610在驱动件620的驱动下进行转动,传动杆630的两端分别与偏心转体610、平移驱动件200转动连接;偏心转体610转动过程中带动传动杆630转动,传动杆630基于与偏心转体610的连接处进行转动过程中,同时沿其长度方向移动,进而带动与其连接的平移驱动件200进行平移,从而将偏心转体610的转动转化为平移驱动件200的平移运动。
驱动件620可选择为电机、马达等驱动部件,以使驱动件620驱动偏心转体610转动,本实施例中的驱动件620选择为空心杯电机,空心杯电机的能量转换效率高、响应速度快、运行稳定,能够有效控制传动部600的动力传递稳定性及可靠性。
参照图3,本实施例中,机架100上设置有滑槽110,平移驱动件200的下部滑动连接于滑槽110内,平移驱动件200受传动部600的带动沿滑槽110平移,滑槽110为平移驱动件200的移动进行导向,提高平移驱动件200运动的平稳度。
另外,本实施例中,平移驱动件200在下部的两侧设置有移动槽220,使平移驱动件200呈“工”字型,机架100上形成滑槽110的两个侧壁嵌入移动槽220内,避免平移驱动件200下部在滑槽110内偏移,进一步提高平移驱动件200移动的平稳性。
本实施例中的偏心转体610可选择为曲柄,曲柄的两端分别与驱动件620、传动杆630转动连接,曲柄、传动杆630、平移驱动件200连接后形成一曲柄滑块结构,从而驱动件620驱动曲柄转动时,平移驱动件200将进行往复平移。通过在传动部600中设置曲柄滑块结构,避免扑翼在扑动过程中因去程与回程速度函数不对称,导致的扑动飞行稳定性低的情况,并且结构简单,便于控制。另外,曲柄的转动中心位于平移驱动件200的平移轨迹的延长线上,因此曲柄、传动杆630与平移驱动件200连接形成对心曲柄滑块结构,对心曲柄化滑块没有急回特性,平移驱动件200的移动更为平稳,进一步提高了扑翼运动及飞行器飞行的稳定性。
参照图4,本实施例中的偏心转体610具有不少于两个的转轴,并且沿竖直方向,相邻的两个转轴之间不同轴心,传动杆630与驱动件620分别连接在两个相邻的不同轴心的转轴上,该两个转轴之间连接有曲柄,使偏心转体610具备曲柄功能,传动杆630与驱动件620所连接的两个转轴之间的轴心距即为曲柄的长度,从而在偏心转体610转动过程中,传动杆630能够跟随偏心转体610的转动同步进行往复运动。偏心转体610的此种结构形式,能够克服因曲柄的尺寸过小,而导致传动不稳定的缺陷,优化传动部600的动力传递效果。
本实施例中,偏心转体610包括三根转轴,从上之下分别为第一转轴611,第二转轴612、第三转轴613,第一转轴611、第二转轴612、第三转轴613平行,第一转轴611、第二转轴612偏心设置,二者的轴心之间具有一定间距,第一转轴611与第二转轴612之间连接有曲柄614,第一转轴611与驱动件620连接,第三转轴613与机架100连接,传动杆630的两端设置有通孔,第二转轴612穿设于该通孔内与传动杆630转动连接,平移驱动件200上设置有固定轴210,传动杆630的另一端与固定轴210转动连接。第一转轴611受驱动件620的驱动进行转动,带动曲柄614基于第一转轴611转动,进而使传动杆630相对第二转轴612、固定轴210进行转动,平移驱动件200跟随传动杆630的转动而进行往复移动。本实施例中的偏心转体610在具备曲柄功能的前提下,使传动杆630进行往复运动,并且实现了偏心转体610同时与机架100、驱动件620连接,使机架100为偏心转体610提供转动基础,驱动件620为偏心转体610提供动力支持。
另外,需要说明的是,偏心转体610的第一转轴611、第三转轴613与机架100间隙配合,便于偏心转体610相对机架100转动,第一转轴611、第三转轴613上均设置有卡环,卡环与转轴之间紧配合,对转轴进行轴向限位,使传动部600的动力传递更为稳定。
另外,需要说明的是,第二转轴612与传动杆630之间间隙配合,便于第二转轴612与传动杆630之间的相对转动,第一转轴611与驱动件620之间,以及第三转轴613与机架100之间均设置有卡环,卡环对转轴进行轴向限位,避免转轴在轴向攒动,使传动部600的动力传递更为稳定。
参照图5,在其他实施例中,偏心转体610可选择为凸轮结构,偏心转体610上设置有转轴615,转轴615与驱动件620连接,驱动件620驱动偏心转体610基于转轴615进行偏心转动;传动杆630的一端与偏心转体610抵接,偏心转体610转动时,传动杆630沿转动体的轮廓进行往复运动,通过将偏心转体610设置为凸轮结构,同样能够实现平移驱动件200的平移。传动杆630与偏心转体610的边缘抵接的端部可设置为平板状或者设置为球状滚子,使传动杆630能够沿偏心转体610的边缘稳定移动。
参照图6,本实施例中的传动部600还包括第一传动齿轮组640,第一传动齿轮组640与驱动件620、偏心转体610连接,用于将驱动件620的动力传递至偏心转体610。具体的,第一传动齿轮组640包括多个相互啮合的齿轮,如,包括与驱动件620连接的第一传动齿轮641、与第一传动齿轮641啮合的双层齿轮642、与双层齿轮642啮合的第二传动齿轮643,第二传动齿轮643与偏心转体610连接,用于带动偏心转体610转动;第一传动齿轮641与驱动件620过盈配合,使第一传动齿轮641与驱动件620同步转动,双层齿轮642的上层齿轮比下层齿轮的齿数多,双层齿轮642的上层齿轮与第一传动齿轮641啮合,双层齿轮642的下层齿轮与第二传动齿轮643啮合,将驱动件620的动力传递至偏心转体610,实现偏心转体610与驱动件620的同步转动。另外,双层齿轮642以及第二传动齿轮643的中心处均固定有中心轴,该中心轴上固定有卡环,卡环对中心轴的轴向进行限位,避免中心轴在轴向窜动。
本实施例中,转动驱动件300设置为齿轮结构,平移驱动件200的两侧设置有用于与转动驱动件300侧部的齿轮进行啮合的齿,因此平移驱动件200在进行往复平移过程中,转动驱动件300跟随平移驱动件200的移动进行往复转动,并带动翼梁400进行往复转动。
本实施例中,驱动部500还包括第二传动齿轮组510,第二传动齿轮组510与转动驱动件300、翼梁400传动连接,用于将转动驱动件300的往复转动传递为翼梁400的往复转动。具体的,第二传动齿轮组510包括第三传动齿轮511,第三传动齿轮511与转动驱动件300啮合,并跟随转动驱动件300的转动进行往复转动,翼梁400跟随第三传动齿轮511的转动进行往复转动。
需要说明的是,第一传动齿轮组640、第二传动齿轮组510内的齿轮数量、齿轮齿数、齿轮模数可根据扑翼的转动角度、飞行器的飞行需求、平移驱动件200的行程适应性选择。另外,第一传动齿轮组640、第二传动齿轮组510内与机架100连接的齿轮的中心轴上均设置卡环,该卡环用于对齿轮的轴向进行限位,提高扑翼驱动装置运行的稳定性。
在其他实施例中,转动驱动件300与平移驱动件200的连接可设置为丝杆螺母结构,平移驱动件200的表面设置与转动驱动件300的内侧进行螺接的螺纹,平移驱动件200往复平移过程中带动转动驱动件300转动,转动驱动件300的外表面可设置轮齿,第二传动齿轮组510中可设置用于将转动驱动件300的转动进行转向的齿轮,如斜齿轮、锥齿轮等,通过设置转向齿轮,便于将转动驱动件300的转动传递至第三传动齿轮511,进而实现扑翼的扑动。
翼梁400的端部设置有连接件410,翼梁400与该连接件410固连,连接件410具有两个相互垂直的连接臂411,两个连接臂411分别与翼梁400、第二驱第三传动齿轮511连接,使翼梁400的转动轴线与第三传动齿轮511的转动轴线重合,以保证扑翼扑动的稳定性。
另外,参照图2,本实施例中的机架100包括第一盖板120及第二盖板130,第一盖板120与第二盖板130相互对置并且留有一定距离,第一盖板120与第二盖板130之间通过设置螺纹紧固件实现固定。驱动部500、传动部600、平移驱动件200均位于第一盖板120与第二盖板130之间,即可对不同的驱动结构进行保护,而且使扑翼驱动装置的结构连接更为紧凑,提高了飞行器飞行的灵活性。
参照图7,本发明还提供了一种飞行器,包括上述的扑翼驱动机构,还包括飞行控制装置700,飞行控制装置700与机架100连接,通过设置扑翼驱动机构提高飞行器飞行中的稳定性及可控性,并可在飞行控制装置700的控制下,实现飞行器的俯仰、偏航、滚转等飞行姿态,使飞行器能够执行不同类型的任务,具有较大的应用范围。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。
如果您还有其他的疑问和需求,请点击【立即咨询】或者是添加微信号 【13608176338】和我们鱼爪商标网客服取得联系,为你排忧解难! 此文章来源于网络,如有侵权,请联系删除
此文章来源于网络,如有侵权,请联系删除
本发明属于直升机座舱应急逃生技术领域,尤其涉及一种用于铰链式舱门抛放的齿轮联动机构及其使用方法。背景技术:目前,国内现有直升机座舱的应急逃生主要通过破坏座舱侧窗形成逃生通道。目
2021-02-24查看详情>>
本实用新型涉及智能飞行器技术领域,尤其涉及一种智能飞行器的折叠机臂转轴装置。背景技术:随着科技的发展,智能飞行器逐渐应用于民用领域,目前航拍、农业、快递运输、灾难救援、观察野生
2021-02-24查看详情>>
本实用新型涉及一种直升机的动力传动系统,具体涉及一种锥齿轮共轴对转复合式双旋翼直升机传动机构。背景技术:共轴对转双旋翼直升机作为复合式高速直升机的一种典型结构,与单旋翼直升机的
2021-02-24查看详情>>